
any

PHYSICAL REVIEW E 67, 041904 ~2003!
Activity dynamics in nonlocal interacting neural fields
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We study the activity of a synaptically coupled neuronal network consisting of an excitatory and an inhibi-
tory layer with isotropic connections and nonlinear interactions. Using the mathematical model of Wilson and
Cowan in two spatial dimensions, we first discuss a spatial hysteresis phenomenon. Then we analyze special
traveling wave solutions with stationary shape. We establish existence conditions, derive analytic expressions
of the particular solutions and their velocity, and finally present numerical simulations.
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I. INTRODUCTION

Formation and propagation of excitation patterns in neu
field models play an important role for understanding
information processing in the human brain~see Refs.@1–5#!.
Both experimental works and computational models of
brain show the occurrence of propagating patterns of acti
in the thalamus and cortex neurons~e.g., Refs.@6–10#!. Such
waves can appear spontaneously or can be caused by
external stimulation.

Many authors analyzed cortical nervous tissues by me
of mathematical field models, mostly derived by statisti
considerations~see Ref.@11#!. Solutions such as standin
pulses and traveling fronts are intensively studied, provid
the understanding of both naturally occuring and patholo
cal phenomena@12–15#.

In order to describe simple cortical and thalamic nervo
tissues, Wilson and Cowan proposed in Ref.@16# an
activator-inhibitor model based on few anatomically a
physiologically motivated assumptions. They derived
mathematical system of integro-differential equations for
time-course grained firing rates of the excitatory and inh
tory neurons.

In the following section, we present the neural field mod
proposed by Wilson and Cowan. Then we extend the spa
hysteresis discussed in Ref.@16# to the case of two spatia
dimensions. In Sec. IV we study traveling wave solutio
with stationary shape. Although not in the basic equatio
included, the rotational symmetry seems to be character
for such waves in two spatial dimensions. For the case
wave profile which is macroscopic compared with the ran
of the synaptical coupling, the velocity, shape, and the e
tence conditions of such solutions can be established ana
cally.

II. FIELD EQUATIONS

Let E(rW,t) and I (rW,t) denote the time-course grained fi
ing rates of the excitatory and inhibitory neurons located
the placerW5(x,y) at time t. Furthermore, letP(rW,t) be the
external excitation on the activator field atrW. The equations
proposed by Wilson and Cowan read
1063-651X/2003/67~4!/041904~8!/$20.00 67 0419
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]E

]t
52E1SE@wEE* E2wEI* I 1P#,

]I

]t
52I 1SI@wIE* E2wII * I #. ~1!

The output functionsSE@x# andSI@x# are nonlinear, mono-
tonic, nonincreasing, and saturate for values ofx. In this
paper, we consider the special case where the output func
is the step function, namely,

Sk@x#5H 0, x,Vk ,

, kP$E,I %

1, x>Vk ,

. ~2!

Thus, a neuron fires at its maximum rate if the poten
exceedes a threshold, otherwise it does not fire.

By w* F, we denote the linear convolution:

w* F~rW,t !5E
R2

w~rW2rW8!F~rW8,t !drW8. ~3!

The kernelswEE(rW), . . . ,wII (rW) are monotonically decreas
ing functions of the distancerªurWu between interacting neu
rons. We consider the normalized functions

wik~rW !5
aik

2ps ik
2

expS 2
r

s ik
D , i ,kP$E,I %. ~4!

This means that the coupling between both excitatory
inhibitory cells is isotropic and homogeneous in space a
time. The homogeneous approximation of the spatial n
work, assumed in this paper, may play a deciding role for
wave propagation. Recently, Bresloff showed for a rela
mathematical model that a propagation failure can occu
an inhomogeneous neural network, if the degree of inhom
geneity is too large, or the speed is too slow@17#.

III. SPATIAL HYSTERESIS

As referred by Wilson and Cowan in Ref.@16#, the model
equations~1! might explain the spatial hysteresis observed
the binocular vision like in the Fender-Julesz experim
©2003 The American Physical Society04-1
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@18#. Wilson and Cowan made the following numerical e
periment with the corresponding one-dimensional–tis
model of Eq.~1!: the stimulationP(x,t) consists of a pair of
sharply peaked Gaussian distributions equal in amplitude
shape. These are initiatially overlapped, so that the ne
response consists of a single excitated area. The two sti
are then symmetrically moved apart. The velocity of t
stimuli is thereby small enough such that the neural respo
is allowed to reach equilibrium for every distance betwe
the stimuli. For a critical stimulus disparity, the neural r
sponse splits into two separated peaks. The distance bet
the response peaks will increase with further increasing
the stimulus disparity. If the stimuli are then again mov
together, the neural response peaks will fuse for a crit
disparity of the stimuli. However, this critical disparity
much less than the first critical distance.

The representation~Fig. 1! shows the results of the nu
merical simulation corresponding to the two-dimensional

FIG. 1. Evolution of the excitatory field~left! in the presence of
a time-dependent stimulation field~right! for aEE520, aEI510.1,
aIE54, aII 51, VE510, VI52, p511. The position of the stimuli
are identical in pictures 1 and 5, and in pictures 2 and 5, res
tively.
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P~rW,t !5
p

2 H expF2
~x2vt !21y2

s2 G
1expF2

~x1vt !21y2

s2 G J . ~5!

There are 5123512 discretization points. The convolutio
kernels have the same width equal to four discretizat
points. The widths of the Gaussian peaks in Eq.~5! mea-
sures 40 points. The distance between the stimuli is varie
steps. For every position of the stimuli, the system is allow
to reach equilibrium. In the first picture of Fig. 1, there
only one excitated area in the neural response. The sec
picture ~vertically numbered! shows the moment before th
pattern in the neural response switches into two separ
peaks. In the next picture, the sign of the velocityv is
changed. The critical disparity of the stimuli, necessary
cause fusion of the peaks in the neural response~fourth pic-
ture!, is less than the one required for the separation. T
value of the excitatory field in the middle of the square
represented in Fig. 2 as a function of the stimulus dispar
showing a hysteresis loop.

In the following, we give an explanation of this hysteres
in the special case, where the stimuli peaks are macrosc
in relation to the typical interaction lenghts between neuro
If the space constants of the stimulus fieldP is very large as
compared to the neural interaction rangessEE , . . . , then at
the pointrW0 the solution of the field corresponds to a hom
geneous solution of the system which is stimulated by a
mogeneuos field of amplitudeP(rW0 ,t)5:P0. If the system is
allowed to reach a stationary solution for every position
the stimuli peaks, thenE(rW0 ,t) and I (rW0 ,t) are solutions of

E5SE~aEEE2aEII 1P0!,

I 5SI~aIEE2aII I !. ~6!

c-

FIG. 2. Excitatory field in the middle of the square as a functi
of the distance between the stimulation peaks for the represent
of Fig. 1.
4-2
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Excluding the improbable caseaIE,VI , that is the inhibitor
field is always zero, the system~6! can have the following
solutions (E,I ):

~1,1! if H P0.VE1aEI2aEE ~ I!

aIE.aII 1VI ~ II !;

~0,0! if P0,VE ~ III !.

If the parameters of the system fulfill the condition~II ! and if
aEI,aEE holds true, then the solutions of Eq.~6! read the
following:

~0,0! for P0,VE2~aEE2aEI!5:P1 ,

~0,0! and ~1,1! for VE2~aEE2aEI!,P0,VE5:P2 ,

~1,1! for P0.VE .

Thus, for very small as well as for very large amplitudes
the stimuli, there exists only one stationary solution: (0
and (1,1), respectively. However, for

P0P@VE2~aEE2aEI!,VE#,

the system can choose between the resting state and th
citated solution. If we start with the unstimulated system a
increase the amplitude of the stimulation, the solution w
switch from the resting state into the excitated state forP0
5P2. Once the system reaches the excitated state, it
stay there even if the stimulation decreases belowP2: the
solution switches to the resting state only atP05P1,P2.

Let us apply these results to the numerical simulation
Fig. 1, for which

0,aEE2aEI,VE

holds true. The amplitude of the stimulus at the center of
square (x,y)5(0,0) is given by

P0~D !5p expS 2
D2

4s2D ,

whereD.0 is the stimulus peak disparity. Starting with th
excited state atP0(0)5p and increasing the stimulus dispa
ity D will cause the separation of the neural response
two peaks at the critical disparity

D152sAlnS p

P1
D52sAlnS p

VE2aEE1aEI
D .

If the sign ofv is changed, and the two stimulation peaks a
moved together, the peaks in the neural response will f
again at the critical disparity

D252sAlnS p

P2
D52sAlnS p

VE
D ,

which is smaller thanD1.
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IV. STATIONARY WAVE FRONTS

In this section, we study the propagation of excitati
fronts that arise for an inhomogeneuos external stimula
of the activatorP(rW,t). Let the excitatory field be stimulate
inside a narrow area aroundrW50 by the constant externa
field P0(rW) given by

P~rW,t !5P0~rW !5H P, rW50

0, rWÞ0.
~7!

Due to the termP, the excitatory fieldE and also the inhibi-
tory field I triggered by that will start to grow atrW50. Nu-
merical simulations show for this case two different soluti
types. In the first case, only neurons in the vicinity of t
stimulated point will be excited, but this excitation does n
spread out. There may appear stationary solutions, but
localized oscillations, depending on the choosen parame
of the problem. In the second case, the oscillation atrW50
spreads out and propagates in the form of concentrical rin
We study this last solution type in the following.

Motivated by the special form of the numerical solutio
of Eq. ~1!, we search for traveling patterns of excitation wi
stationary shape and velocity, this means solutions of
form

E~rW,t !5g1~r 2vt !,

I ~rW,t !5g2~r 2vt !. ~8!

Due to the convolution terms, Eqs.~1! are not invariant un-
der the tranformationr °r 2vt. Thus, a global solution will
not have the form expressed by Eqs.~8!. However, far
enough from the center of the excitation, namely, for

r @s ik ,i ,kP$E,I %, ~9!

the convolution terms such asw* E(rW,t) can also be written
in form ~8!. In fact, taking Eq.~9! into account, we can
approximate this convolution terms as follows:

w* E~rW,t !5E
0

`E
0

2p

w~r 8!g1~r 2vt1r 8cosw!r 8dr8dw.

~10!

Thus, there may exist solutions of Eq.~1! which have form
~8! for large values ofr. Setting

zªr 2vt, ~11!

we get for theg1(z) andg2(z) the system

2vg18~z!52g11SE@wEE* g12wEI* g2#,

2vg28~z!52g21SI@wIE* g12wII * g2#. ~12!

Sincer 50 is the center of the wave andv its velocity, the
fields E and I should be unperturbated forr .vt. Therefore,
we have the boundary conditions
4-3
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g1~0!5g2~0!50. ~13!

Solving Eqs.~12! yields the stationary shape of the excit
tion waves for the two types of neurons. To this end,
analyze the sign of the expressions

G1~z!ªwEE* g12wEI* g22VE and

G2~z!ªwIE* g12wII * g22VI . ~14!

The simplest possible form of the wave is that with o
maximum, this means that each ofg1 andg2 are monotoni-
cally decreasing only in one bounded interval. Let (a,0) and
(c,b), wherea,0, c,b, denote the intervals whereg1 and
g2 are monotonically decreasing functions ofz. There fol-
lows:

G1~z!5H .0, zP~a,0!

,0, otherwise;

G2~z!5H .0, zP~b,c!

,0, otherwise.
~15!

The solution of Eqs.~12! then takes the form

g1~z!55
0, z.0

12expS z

v D , a,z,0

FexpS 2
a

v D21GexpS z

v D , z,a;

g2~z!55
0, z.b

12expS z2b

v D , c,z,b

FexpS 2
c

v D2expS 2
b

v D GexpS z

v D , z,c.

~16!

From Eqs.~14!, we see thatG2 can only be positive at a
certain pointz, if g1 is positive at this point. Sinceg1(z)
50 for z.0, we then havec,b,0. The excitation can
only propagate in this form if the wave of the activator
traveling in front of the inhibitor wave. Furthermore, it fo
lows from Eqs.~15! and ~16! that G1 is increasing andg1
decreasing withz for z→a, z.a. This is only possible ifg2
is a decreasing function ofz at this point, which meansc
,a,b. Thus, we have

c,a,b,0. ~17!

The velocityv and the parametersa,b,c can be determined
by inserting the solutionsg1 andg2 in Eqs.~14! and solving
the four conditions

G1~0!5G1~a!50,

G2~b!5G2~c!50. ~18!
04190
e

We do this under the approximation that the dimensions
the wave are very large compared with the ranges of
interaction, that is,

s ik!v,2b,b2a,a2c, i ,kP$E,I %. ~19!

In this case, the expressionG1(0) simplifies to~see the Ap-
pendix!

G1~0!'
2aEEsEE

pv
2VE . ~20!

We obtain the velocity of the wave

v5
2aEEsEE

pVE
. ~21!

We have further

G2~b!'aIEF12expS b

v D G2
2aII s II

pv
2VI ~22!

and condition~18! yields

b52v lnS aIE

aIE2VI2VE

aII s II

aEEsEE

D . ~23!

We determine the parametera from

G1~a!'aEEF12expS a

v D G2
2aEEsEE

pv

2aEIF12expS a2b

v D G2VE , ~24!

and we get

a52v lnF aEI expS 2
b

v D2aEE

aEI2aEE12VE

G . ~25!

Finally, the last parameterc results from the condition
G2(c)50. Using the approximation~19!, we have

G2~c!'aIE expS c

v D FexpS 2
a

v D21G
2aII F12expS c2b

v D G2VI ~26!

and the parameterc results to be

c52v lnH aIEFexpS 2
a

v D21G1aII expS 2
b

v D
VI1aII

J .

~27!

Verifying the inequalities~17!, we gain the conditions tha
should be filled out by the parameters of the system in or
4-4
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for such a wave to propagate. The solution forv,a,b,c
should also be consistent with approximation~19!.

For the sake of simplicity, we neglect the self-inhibitio
of the inhibitor neurons by takingaII 50. This does not
change the following computation much but simplifies t
results and their interpretation. Fromb,0, we see the con
dition

aIE.VI . ~28!

The conditiona,b leads to the inequalities

aEE.2VE

aIE

VI
and

aEI.aEE22VE . ~29!

With this choice of the parameters, the last conditionc,a is
automatically fulfilled. Due to

expS 2
b

v D,expS 2
a

v D , ~30!

we have

~aIE2VI !expS 2
a

v D.aIE ~31!

and further

aIEFexpS 2
a

v D21G
VI

.expS 2
a

v D . ~32!

In conclusion, a traveling wave of form~16! will exist if the
choosen parameters of the system~with aII 50) satisfy the
conditions

aIE.VI ,

aEE.2VE

aIE

VI
, and

aEI.aEE22VE . ~33!

The first two inequalities show that the activator action
the inhibitor and activator must be greater than a factor p
portional with the thresholdsVI and VE . This conditions
probably ensure the point to point propagation of the exc
tion in the activator and inhibitor fields. The interpretation
the third condition is that the inhibition of the activator mu
be greater than the self-activation. This is a very import
condition, ensuring that those points that are excitated by
activator wave return into the resting state when the inhib
wave arrives. In consequence, each point will have a ref
tory period after the excitation wave has passed. The po
behind the excitation front of the activator are then inhibit
and also act like a barrier for every excitation front traveli
in the opposite direction. Thus, rings coming from differe
excitation centers will vanish when they meet. These res
04190
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apply to the case where approximation~19! is correct. From
v@sEE , it follows in particular that the coefficientaEE of
the self-activation should be much larger than the thresh
VE .

Finally, we can determine the distance between two s
cessively released ringsl from the condition

wEE* g1~2l!2wEI* g2~2l!1P5VE . ~34!

Following approximation~19!, we obtain

l5v lnFaEI~e2c/v2e2b/v!2aEE~e2a/v21!

P2VE
G . ~35!

We finally present numerical results for system~1! with an
external stimulationP of form ~7!. The parameters of the
system respect the restrictions above mentioned . There
5123512 discretization points. The convolution kernels ha
the same widths, and the distance between two discretiz
tion points iss/3.2.

In the first representation~Fig. 3!, there is only one stimu-
lated area (333 points! in the middle of the field. Concen
trical rings of excitation are periodically released and a
propagating without attenuation. One can clearly see the
lay in the propagation of the two excitation fronts of th
activator and inhibitor cells that we discussed in the prec
ing section.

In order to have evidence for the interaction of differe
waves, there are two separated stimulated areas in the se
representation~Fig. 4!. Each of them gives rise to a syste
of concentrical rings. This numerical simulation shows t
remarkable property of mutual annihilation upon collision
traveling waves.

The properties revealed by these simulations remind v
much of the traveling waves of activity in the so-called ‘‘e
citable media,’’ as in the Belousov-Zhabotinskii reaction,
the spread of a forest fire. Like these systems, our netw
has the ability to propagate signals without damping, and
characteristic to excitable media, two signals started fr
different sources cancel when they collide.

In signals coming from biological systems, there is
ways a lot of noise. Therefore, we discuss in the followi
the impact of noise on the traveling wave solution. To th
end, we analyze the behavior of the system when it is stim
lated by the external field

P~rW,t !5P0~rW !1p~rW !,

where P0 is the unperturbated field~7!, and p(rW) a small
perturbation with spatial uniformly distributed amplitud
Therefore,

^p~rW !&50

holds true. The numerical simulation of Fig. 5 shows for th
case a perturbated traveling wave solution with qualitativ
the same form as for the unperturbated system. Beside
defects in the form of the wave front, there is an importa
difference in the propagation speed, and the distance
tween two successive wave fronts. Several numerical si
4-5
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lations with noise have actually shown, that the wave pro
gates faster that in the unperturbated case, and with la
wavelength.

V. DISCUSSION

In the first part of this paper, we analyzed a spatial h
teresis phenomenon for the two-dimensional neural fi
model of Wilson and Cowan. Hysteresis occurs only if t
ratio

aEE2aEI

VE
~36!

takes values in the interval~0,1! and if the amplitude of the
stimulus is large enough (p.VE). The size of the hysteresi
loop seems to be proportional to the ratio~36!, so this phe-
nomen accentuates for

FIG. 3. Time evolution of the activator~left! and inhibitor field
~right! for aEE58.3, aEI510, aIE54, aII 50, VE51, VI52.4. A
small area in the middle of the square is stimulated by the cons
stimulationP51.2.
04190
-
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VE2aEE1aEI→10.

In the second part, we studied traveling wave solutions
system~1! in the presence of a localized stimulation. Und
certain conditions, rings of excitation will propagate from t
stimulated point. Far enough from the center of stimulati
the excitation travels with constant velocity and amplitude
is remarkable that the propagation speed of the wave
pends only on the parameters concerning the self-activa
of the system: In approximation~19!, the calculated velocity
is growing with the strength and the range of the activat
activator interaction and it is in inverse proportion to t
thresholdVE .

Our results have revealed the importance of the inhibit
connections for the existence of the traveling wave soluti
There always exists a time delay between the activa
wave of the excitatory and inhibitory neurons, which plays
decisive role for the wave propagation. A similar mechani
was reported for slow pulse propagation in one-dimensio

nt

FIG. 4. Time evolution of the activator~left! and inhibitor field
~right! for the same set of parameters as in~Fig. 3! and two sym-
metrically positioned stimulation centers.
4-6
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networks of excitatory and inhibitory integrate and fire ne
rons by Golomb and Ermentrout~see Refs.@14,15#!.

As in Ref. @10#, we found that the wave front velocit
increases linearly with the characteristic length of the c
nectivity sEE . By contrast, the propagation speed in o
approximation depends linearly on the synaptic stren
aEE , and not logarithmically, as in Ref.@10#.

The amplitude of the stimulationP does not influence this
propagation speed, but rather the distance between two
cessively released rings.

APPENDIX

In this section, we describe the approximations used in
evaluation of Eqs.~20!, ~24!, ~22!, and~26!.

In order to computeG1(0),G1(a), . . . , weneed the con-
volutions wEE* g1 , wEI* g2 , . . . at the evaluation point

FIG. 5. Time evolution of the activator~left! and inhibitor field
~right! for the same set of parameters as in~Fig. 3! and with uni-
formly distributed noise. The interval of time between two succ
sive pictures is half of the similar time of Fig. 3.
04190
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0,a, . . . . Due to the form of the interaction kernels
wEE , . . . , only the points in the vicinity of radiussEE , . . .
have a significant contribution to the corresponding con
lution integrals. Thereby, if the dimensions of the wave a
very large compared with the range of the interaction kern
sEE , . . . , wejust have to consider the solution parts ofg1
and g2 immediately on the left and on the right side of th
point, where the convolution has to be calculated.

For example, to evaluateG1(0) we need the convolution
wEE* g1(0) and wEI* g2(0). Due tog1(z)50 if z.0, we
have

wEE* g1~0!5E
0

`E
0

2p aEE

2psEE
2

expS 2
r

sEE
D

3g1~r cosw!r dr dw

5E
0

`E
p/2

3p/2 aEE

2psEE
2

expS 2
r

sEE
D

3g1~r cosw!rdrdw. ~A1!

For large values ofa compared with the range of the inte
action kernelswEE , only the values ofg1 in the close vicin-
ity of the point 0, where the convolution is calculated, ha
a contribution to this integral. Thus, with approximation~19!
we can substitute in the integral~A1! the solutiong1 for a
,z,0

wEE* g1~0!'E
0

`E
p/2

3p/2 aEE

2psEE
2

expS 2
r

sEE
D

3@12er cosw/v#rdrdw

5paEEsEE
2 2aEEE

p/2

3p/2 dw

S 2
1

s
1

cosw

v D 2 .

~A2!

In the first order ofs/v, we make the approximations

E
p/2

3p/2 dw

S 2
1

s
1

cosw

v D 2 5ps22
4s3

v
and

E
2p/2

p/2 dw

S 2
1

s
1

cosw

v D 2 5ps21
4s3

v
. ~A3!

Due to2b!sEI ~19!, the functiong2 is zero in the imme-
diate vicinity of the point 0, so we can neglectwEI* g2(0).
We finally obtain

G1~0!'
2aEEsEE

pv
2VE . ~A4!

-

4-7
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