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Activity dynamics in nonlocal interacting neural fields
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We study the activity of a synaptically coupled neuronal network consisting of an excitatory and an inhibi-
tory layer with isotropic connections and nonlinear interactions. Using the mathematical model of Wilson and
Cowan in two spatial dimensions, we first discuss a spatial hysteresis phenomenon. Then we analyze special
traveling wave solutions with stationary shape. We establish existence conditions, derive analytic expressions
of the particular solutions and their velocity, and finally present numerical simulations.
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I. INTRODUCTION JE
—=—E+ Sg[Wggr E—wg x| + P],

Formation and propagation of excitation patterns in neural
field models play an important role for understanding the ol
information processing in the human brdsee Refs[1-5]). i =1+ S[wg*E—w*I]. (1)
Both experimental works and computational models of the
brain show the occurrence of propagating patterns of activityrhe output functionsSg[x] and S;[x] are nonlinear, mono-
in the thalamus and cortex neurdesg., Refs[6—10]). Such  tonic, nonincreasing, and saturate for valuesxofin this
waves can appear spontaneously or can be caused by sofeper, we consider the special case where the output function

external stimulation. is the step function, namely,
Many authors analyzed cortical nervous tissues by means
of mathematical field models, mostly derived by statistical 0, x<Vy,
considerationgsee Ref.[11]). Solutions such as standing SIx]= , kel{E,I}, 2)

pulses and traveling fronts are intensively studied, providing

=
the understanding of both naturally occuring and pathologi- L x=Vi,
cal phenomengl2-15. . . Thus, a neuron fires at its maximum rate if the potential
In order to describe simple cortical and thalamic nervousexceedes a threshold, otherwise it does not fire.
tissues, Wilson and Cowan proposed in RgL6] an By w*F, we denote the linear convolution:
activator-inhibitor model based on few anatomically and
physiologically motivated assumptions. They derived a - TN -,
mathematical system of integro-differential equations for the wF(r,t)= sz(r FOF(r,Hdr’. (3)

time-course grained firing rates of the excitatory and inhibi-
tory neurons. The kernelswgg(r), ... w;(r) are monotonically decreas-

In the following section, we present the neural field modeling functions of the distance.=|F| between interacting neu-
proposed by Wilson and Cowan. Then we extend the spatighns We consider the normalized functions
hysteresis discussed in R¢l6] to the case of two spatial

dimensions. In Sec. IV we study traveling wave solutions R i r
with stationary shape. Although not in the basic equations Wi (r)= : > exp( - —) i,ke{E,Il}. 4)
included, the rotational symmetry seems to be characteristic 2moy Tik

for such waves in two spatial dimensions. For the case of éll_h. hat th lina b both . d
wave profile which is macroscopic compared with the range h'.sb.meansnt at the coup Ingd hetween oth excitatory and
of the synaptical coupling, the velocity, shape, and the exis!nMPItory cells Is isotropic and homogeneous in space an

tence conditions of such solutions can be established analytri'-me' The hom(_)gen_eous approximation of .the spatial net-
cally. work, assumed in this paper, may play a deciding role for the

wave propagation. Recently, Bresloff showed for a related
mathematical model that a propagation failure can occur in
an inhomogeneous neural network, if the degree of inhomo-

Il. FIELD EQUATIONS geneity is too large, or the speed is too sldv].

Let E(F,t) andI(F,t) denote the time-course grained fir-
ing rates of the excitatory and inhibitory neurons located at lll. SPATIAL HYSTERESIS

the placer=(x,y) at timet. Furthermore,QIeP(r*,t) be the As referred by Wilson and Cowan in R¢1.6], the model
external excitation on the activator field mt The equations equationg1) might explain the spatial hysteresis observed in
proposed by Wilson and Cowan read the binocular vision like in the Fender-Julesz experiment
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FIG. 2. Excitatory field in the middle of the square as a function
of the distance between the stimulation peaks for the representation
of Fig. 1.

sue. The stimulus fiel®(r t) is given by

2142
p(F’t):E[eXF{_m

2 o2

0_2

p{ (x+ut)2+y?
+texg ——————

} . (5)

There are 512512 discretization points. The convolution
kernels have the same width equal to four discretization
points. The widtho of the Gaussian peaks in E() mea-
sures 40 points. The distance between the stimuli is varied in
steps. For every position of the stimuli, the system is allowed
to reach equilibrium. In the first picture of Fig. 1, there is
only one excitated area in the neural response. The second

_FIG. 1. Evolution_of the_exci_tatory fieldeft) in the presence of picture (vertically numberefshows the moment before the
a time-dependent stimulation fieldght) for age=20, az=10.1, ~ hattern in the neural response switches into two separated
=4, 3 =1, Ve=10,V;=2, p=11. The position of the stimuli Qpeaks. In the next picture, the sign of the velocityis
fi‘;zl;dem'cal in pictures 1 and 5, and in pictures 2 and 5, reSpeGanaad The critical disparity of the stimuli, necessary to

' cause fusion of the peaks in the neural respdfmath pic-

. . . ture), is less than the one required for the separation. The
[18]. Wilson and Cowan made the following numerical ex- value of the excitatory field ir? the middle of tr?e square is

periment with the corresponding one-dimensional—tissu P : ! . .
model of Eq.(1): the stimulationP(x,t) consists of a pair of ;%ﬁ?negnfi;gtg:géii %SOS function of the stimulus disparity,

sharply peaked Gaussian distributions equal in amplitude an In the following, we give an explanation of this hysteresis

shape. These are initiati_ally over_lapped, so that the NEUray the special case, where the stimuli peaks are macroscopic
response consists of a single excitated area. The two SUMYH reation to the typical interaction lenghts between neurons.

are the_n symmetrically moved apart. The velacity of theIfthe space constatt of the stimulus fieldP is very large as
stimuli is thereby small enough such that the neural respons(gaomloan,_}d to the neural interaction ranges: then at

is allowed to reach equilibrium for every distance between - i ,
the stimuli. For a critical stimulus disparity, the neural re- the pointro the solution of the field corresponds to a homo-

sponse splits into two separated peaks. The distance betwe8fN€OUS solu_tion of the system which is stimulated by a ho-
the response peaks will increase with further increasing ofmogeneuos field of amplitude(r,,t) =:Po. If the system is
the stimulus disparity. If the stimuli are then again movedallowed to reach a stationary solution for every position of

together, the neural response peaks will fuse for a criticathe stimuli peaks, theE(ry,t) andl(ry,t) are solutions of
disparity of the stimuli. However, this critical disparity is

much less than the first critical distance. E=Sg(aggE—ag|l + Py),
The representatiofFig. 1) shows the results of the nu-
merical simulation corresponding to the two-dimensional tis- =S (aigE—a;l). (6)
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Excluding the improbable casge<V,, that is the inhibitor
field is always zero, the syste(B) can have the following
solutions E,1):

(L1 it Po>Vet+ag —age (1)

PHYSICAL REVIEW E 67, 041904 (2003

IV. STATIONARY WAVE FRONTS

In this section, we study the propagation of excitation
fronts that arise for an inhomogeneuos external stimulation

of the activatorP(r,t). Let the excitatory field be stimulated
inside a narrow area around=0 by the constant external

aeg>a)tV, (Iy; .
field Py(r) given by
(0,0) if Po<<Vg (lll). -
Fo=poi=| ™
P(r,t)=Py(r)= R 7
0 0, r#+0.

If the parameters of the system fulfill the conditidh) and if
ag<age holds true, then the solutions of E(p) read the

following: Due to the ternP, the excitatory fieldE and also the inhibi-

tory field | triggered by that will start to grow at=0. Nu-
merical simulations show for this case two different solution
types. In the first case, only neurons in the vicinity of the
stimulated point will be excited, but this excitation does not
spread out. There may appear stationary solutions, but also
localized oscillations, depending on the choosen parameters

Thus, for very small as well as for very large amplitudes ofof the problem. In the second case, the oscillatiom a0
the stimuli, there exists only one stationary solution: (0,0)spreads out and propagates in the form of concentrical rings.
and (1,1), respectively. However, for We study this last solution type in the following.

Motivated by the special form of the numerical solutions
of Eq. (1), we search for traveling patterns of excitation with

) stationary shape and velocity, this means solutions of the
the system can choose between the resting state and the gyrm

citated solution. If we start with the unstimulated system and
increase the amplitude of the stimulation, the solution will
switch from the resting state into the excitated stateHgr
=P,. Once the system reaches the excitated state, it will I(Ft)zgz(r—vt). @)
stay there even if the stimulation decreases belyw the '
solution switches to the resting state onlyRat=P1<P5. Due to the convolution terms, Eggl) are not invariant un-
Let us apply these results to the numerical simulation ofjer the tranformation—r —vt. Thus, a global solution will
Fig. 1, for which not have the form expressed by Eq8). However, far
enough from the center of the excitation, namely, for

(0,0) fOI’ P0<VE_(aEE_aE|)::P1,
(0,0) and (1,1) for VE_(aEE_aE|)<Po<VE::P2,

(1,1 for Po>Vg.

Poe[Ve—(age—ag)),Vel,

E(r,t)=ga(r—ot),

0<aEE_ aE|<VE
. . r>0'ik,i,ke{E,|}, (9)
holds true. The amplitude of the stimulus at the center of the
square X,y)=(0,0) is given by the convolution terms such as+E(r,t) can also be written
) in form (8). In fact, taking Eq.(9) into account, we can
D
Po(D)ZPEXD( - P)

approximate this convolution terms as follows:
. . o N wrE(r,t)=
whereD >0 is the stimulus peak disparity. Starting with the
excited state aP,(0)=p and increasing the stimulus dispar-

ity D will cause the separation of the neural response into i i i
two peaks at the critical disparity Thus, there may exist solutions of Ed) which have form

(8) for large values of. Setting

o (2
J f w(r")gy(r—vt+r’cose)r’dr'de.
o Jo
(10)

p
D =20\/In — =20’\/|n<— . z:=r —ut, (11
' Py Ve—agetag
we get for th z) andg,(z) the system
If the sign ofv is changed, and the two stimulation peaks are g ®0:(2) 92(2) Y
moved together, the peaks in the neural response will fuse —v01(2)=—01+ Se[Wee* 91— We * 921,
again at the critical disparity
—005(2)=—0go+ S[Wig* g1~ W) *g]. (12

D2:20' \/ln

which is smaller tharD ;.

Sincer =0 is the center of the wave andits velocity, the
fields E and| should be unperturbated foe>vt. Therefore,
we have the boundary conditions

FJ-a ]
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91(0)=g,(0)=0. (13 We do this under the approximation that the dimensions of
the wave are very large compared with the ranges of the
Solving Egs.(12) yields the stationary shape of the excita- interaction, that is,
tion waves for the two types of neurons. To this end, we

analyze the sign of the expressions ox<v,—b,b—a,a-c, ike{E]l}. (19
G1(2):==Wgg*g;—Wg*g,— Vg and In this case, the expressi@y (0) simplifies to(see the Ap-
pendix
Ga(2):=Wig*g1—W;*go—V,. (14 2a
G,(0)~ c9eedeE _, (20)
The simplest possible form of the wave is that with one ! P E:

maximum, this means that each @f andg, are monotoni- ] )
cally decreasing only in one bounded interval. Lej®) and  We obtain the velocity of the wave
(c,b), wherea<0, c<b, denote the intervals wherg and

g, are monotonically decreasing functions ofThere fol- = @_ (22)
lows: Ve
>0, ze(a,0) We have further
Gi(2)= e
<0, otherwise; b 2a, 0y,
Gz(b)%auz 1_exﬁ{_) _—7T _V| (22)
>0, ze(bc) 0 0
Ga(2)= <0, otherwise. (19 and condition(18) yields
. a
The solution of Eqs(12) then takes the form b=—uvln IE — _ (23)
1nen
0, z>0 ae—Vi—Ve———
1E | EaEEUEE
z
_ 1—eXp(— ,  a<z<o0 We determine the parametarfrom
9:1(2)= v
a z a 2agpoge
——]=1 _ <a ~ — - ===
exr{ 5 ex;{v), z<a, Gi(a)~aggl 1 exy{v p
a—b
O, Z>b _aE| 1—eX[<—”_VE, (24)
z—b v
l—-exp —|, c<z<b
92(2)= v and we get
A= -enl 5] o]
exp ——|—exp ——| |lexpg =|, z<c. l{ b
v v v ag exp — " —age
(16) a=-vln . (25

ag—aggt 2V
From Egs.(14), we see thatG, can only be positive at a
certain pointz, if g, is positive at this point. Sincg;(z) Finally, the last parametec results from the condition
=0 for z>0, we then havee<b<0. The excitation can G2(¢)=0. Using the approximatiofl9), we have
only propagate in this form if the wave of the activator is c a
™
v

traveling in front of the inhibitor wave. Furthermore, it fol- G,(C)~ae ex;{—)
c—b
1—ex - -V, (26)

lows from Egs.(15) and (16) that G; is increasing andj;

decreasing witlz for z—a, z>a. This is only possible if,

is a decreasing function of at this point, which means —ay
<a<b. Thus, we have

c<a<b<o0. (17)  and the parameter results to be
The velocityv and the parameteisb,c can be determined a exp< _ E) “1l+a exp( _ E)
. . . . . IE 1]
by inserting the solutiong; andg, in Egs.(14) and solving | v v
o c=-vln
the four conditions V,+ay -
G1(0)=G4(a)=0,
Verifying the inequalities(17), we gain the conditions that
G,(b)=G,(c)=0. (18)  should be filled out by the parameters of the system in order
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for such a wave to propagate. The solution fam,b,c
should also be consistent with approximati@ds).

PHYSICAL REVIEW E 67, 041904 (2003

apply to the case where approximatid®) is correct. From
v>0gg, it follows in particular that the coefficierdagg of

For the sake of simplicity, we neglect the self-inhibition the self-activation should be much larger than the threshold

of the inhibitor neurons by taking, =0. This does not
change the following computation much but simplifies the
results and their interpretation. Fram<0, we see the con-

dition
ae>V, . (28)
The conditiona<b leads to the inequalities
agg> 2VEE and
Vi
ag;>age—2Ve. (29

With this choice of the parameters, the last conditiena is
automatically fulfilled. Due to

b a
exp — —|<exp ——|, (30
v v
we have
(alE_V|)eXF<_; >ae (31)
and further
a
| ex 3 -1 a
v >ex -5 (32

In conclusion, a traveling wave of forfd6) will exist if the
choosen parameters of the systénith a;, =0) satisfy the
conditions

a|E>V| ,
Qe
agg> ZVET' and
|

aE|>aEE_2VE. (33)

Ve.
Finally, we can determine the distance between two suc-
cessively released rings from the condition

Weg*g1(—N) —=Wg*go( —N) +P=Vg. (34
Following approximation19), we obtain
a e*C/v_e*b/v —a e*a/v_l
NPT )~ aee( 1 e

P_VE

We finally present numerical results for systéi with an
external stimulationP of form (7). The parameters of the
system respect the restrictions above mentioned . There are
512x 512 discretization points. The convolution kernels have
the same widthr, and the distance between two discretiza-
tion points iso/3.2.

In the first representatioffrig. 3), there is only one stimu-
lated area (X 3 pointg in the middle of the field. Concen-
trical rings of excitation are periodically released and are
propagating without attenuation. One can clearly see the de-
lay in the propagation of the two excitation fronts of the
activator and inhibitor cells that we discussed in the preced-
ing section.

In order to have evidence for the interaction of different
waves, there are two separated stimulated areas in the second
representatioriFig. 4). Each of them gives rise to a system
of concentrical rings. This numerical simulation shows the
remarkable property of mutual annihilation upon collision of
traveling waves.

The properties revealed by these simulations remind very
much of the traveling waves of activity in the so-called “ex-
citable media,” as in the Belousov-Zhabotinskii reaction, or
the spread of a forest fire. Like these systems, our network
has the ability to propagate signals without damping, and as
characteristic to excitable media, two signals started from
different sources cancel when they collide.

In signals coming from biological systems, there is al-
ways a lot of noise. Therefore, we discuss in the following
the impact of noise on the traveling wave solution. To this
end, we analyze the behavior of the system when it is stimu-
lated by the external field

The first two inequalities show that the activator action on

the inhibitor and activator must be greater than a factor pro-

portional with the threshold¥, and Vg. This conditions

P(r,t)=Pq(r)+p(r),

probably ensure the point to point propagation of the excitawhere P, is the unperturbated fiel(7), and p(r) a small

tion in the activator and inhibitor fields. The interpretation of perturbation with Spatia| uniform|y distributed amp"tude_
the third condition is that the inhibition of the activator must Therefore,

be greater than the self-activation. This is a very important
condition, ensuring that those points that are excitated by the <p(F)>:0

activator wave return into the resting state when the inhibitor

wave arrives. In consequence, each point will have a refradiolds true. The numerical simulation of Fig. 5 shows for this
tory period after the excitation wave has passed. The pointsase a perturbated traveling wave solution with qualitatively
behind the excitation front of the activator are then inhibitedthe same form as for the unperturbated system. Beside the
and also act like a barrier for every excitation front travelingdefects in the form of the wave front, there is an important
in the opposite direction. Thus, rings coming from differentdifference in the propagation speed, and the distance be-
excitation centers will vanish when they meet. These resultsveen two successive wave fronts. Several numerical simu-
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FIG. 3. Time evolution of the activatdgteft) and inhibitor field FIG. 4. Time evolution of the activatdteft) and inhibitor field
(right) for age=8.3, ag;=10, ag=4, a,,=0, Vg=1, V|=2.4. A (right) for the same set of parameters agfig. 3) and two sym-
small area in the middle of the square is stimulated by the constanhetrically positioned stimulation centers.
stimulationP=1.2.

. . . Ve—agetag— +0.
lations with noise have actually shown, that the wave propa-

gates faster that in the unperturbated case, and with larger _ _ _
wavelength. In the second part, we studied traveling wave solutions of

system(1) in the presence of a localized stimulation. Under

certain conditions, rings of excitation will propagate from the

V. DISCUSSION stimulated point. Far enough from the center of stimulation,

In the first part of this paper, we analyzed a spatial hysihe excitation travels with constant velocity and amplitude. It
teresis phenomenon for the two-dimensional neural fieldS remarkable that the propagation speed of the wave de-

model of Wilson and Cowan. Hysteresis occurs only if thePe€nds only on the parameters concerning the self-activation
ratio of the system: In approximatiofi9), the calculated velocity

is growing with the strength and the range of the activator-
activator interaction and it is in inverse proportion to the
Age— agy
== (36)  thresholdVe.
Ve Our results have revealed the importance of the inhibitory
connections for the existence of the traveling wave solution.
takes values in the intervé0,l) and if the amplitude of the There always exists a time delay between the activation
stimulus is large enouglptVg). The size of the hysteresis wave of the excitatory and inhibitory neurons, which plays a
loop seems to be proportional to the rat86), so this phe- decisive role for the wave propagation. A similar mechanism
nomen accentuates for was reported for slow pulse propagation in one-dimensional
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0a,.... Due to theform of the interaction kernels
WEgg, - . ., only the points in the vicinity of radiusgg, . . .
have a significant contribution to the corresponding convo-
o lution integrals. Thereby, if the dimensions of the wave are
very large compared with the range of the interaction kernels
OgE, - - -, Wejust have to consider the solution partsgf

and g, immediately on the left and on the right side of the

point, where the convolution has to be calculated.
For example, to evalua®,(0) we need the convolutions
Wee* g1(0) andwg *g,(0). Due togq(2)=0 if z>0, we

have
27 Agg p
weerg0)= [ p(__)
ee*01(0)= 27TO'EE Oer

X g1(pcose)pdpde

jfh/z agg [{ p)
2770'EE OEE

X g1(p cosp) pdpde. (A1)

For large values o& compared with the range of the inter-
action kernelsvgg, only the values 0§ in the close vicin-

ity of the point O, where the convolution is calculated, have
a contribution to this integral. Thus, with approximati@r®)
we can substitute in the integréAl) the solutiong, for a

<z<O0
372 aEE p
o L N R
ee*0:(0)= 12 2770'EE OEE
X[l—epCOS‘Plv]pddeD

372 d
FIG. 5. Time evolution of the activatdteft) and inhibitor field = WaEEUéE_ aEEf #
(right) for the same set of parameters agfig. 3) and with uni- 2 ( — (’D)
formly distributed noise. The interval of time between two succes- o v
sive pictures is half of the similar time of Fig. 3. (A2)

. o . ) In the first order ofo/v, we make the approximations
networks of excitatory and inhibitory integrate and fire neu-

rons by Golomb and Ermentrogee Refs[14,15).

As in Ref.[10], we found that the wave front velocity J%/Z de I 4;'3 and
increases linearly with the characteristic length of the con- 2 1 cose\? v
nectivity ogg. By contrast, the propagation speed in our o v
approximation depends linearly on the synaptic strength
age, and not logarithmically, as in Ref10]. 3

The amplitude of the stimulatioR does not influence this f"’z de = o2+ 4o~ (A3)
propagation speed, but rather the distance between two suc- —al2 1 cose\? v
cessively released rings. . v

Due to —b< o, (19), the functiong, is zero in the imme-
diate vicinity of the point 0, so we can neglegg,* g»(0).

In this section, we describe the approximations used in théVe finally obtain
evaluation of Eqs(20), (24), (22), and(26).
In order to comput&;(0),G,(a), . . ., weneed the con- 2aggoEE

volutions Wegg*g;, Wg*g,, ... at the evaluation points G1(0)~ U ~Ve: (A4)

APPENDIX
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